ANI
ANI1
¶
Bases: BaseDataset
The ANI-1 dataset is a collection of 22 x 10^6 structural conformations from 57,000 distinct small organic molecules. The molecules contain 4 distinct atoms, C, N, O and H. Electronic structure calculations use the wB97x density functional and the 6-31G(d) basis set. For generating structures, smiles strings for molecules are used for generating 3D conformations using RDKit. These 3D structures are then pre-optimized to a stationary point using the MMFF94 force field. Finally, geometries are optimized until energy minima using the chosen DFT level.
Usage:
from openqdc.datasets import ANI1
dataset = ANI1()
Source code in openqdc/datasets/potential/ani.py
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 |
|
ANI1CCX
¶
Bases: ANI1
ANI1-CCX is a dataset of 500k conformers subsampled from the 5.5M conformers of ANI-1X dataset using active learning. The conformations are labelled using a high accuracy CCSD(T)*/CBS method.
Usage:
from openqdc.datasets import ANI1CCX
dataset = ANI1CCX()
Source code in openqdc/datasets/potential/ani.py
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 |
|
__smiles_converter__(x)
¶
util function to convert string to smiles: useful if the smiles is encoded in a different format than its display format
Source code in openqdc/datasets/potential/ani.py
197 198 199 200 201 |
|
ANI1CCX_V2
¶
Bases: ANI1CCX
ANI1CCX_V2 is an extension of the ANI1CCX dataset with additional PM6 and GFN2_xTB labels for each conformation.
Usage:
from openqdc.datasets import ANI1CCX_V2
dataset = ANI1CCX_V2()
Source code in openqdc/datasets/potential/ani.py
204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 |
|
ANI1X
¶
Bases: ANI1
The ANI-1X dataset consists of ANI-1 molecules + some molecules added using active learning, which leads to a total of 5,496,771 conformers with 63,865 unique molecules. Databases of molecules like GDB-11, ChEMBL, generated amino acids and 2-amino acid peptides are used for sampling new molecules. One of the techniques are used for sampling conformations, (1) molecular dynamics, (2) normal mode sampling, (3) dimer sampling and (4) torsion sampling.
Usage:
from openqdc.datasets import ANI1X
dataset = ANI1X()
Source code in openqdc/datasets/potential/ani.py
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
|
ANI2X
¶
Bases: ANI1
The ANI-2X dataset was constructed using active learning from modified versions of GDB-11, CheMBL, and s66x8. It adds three new elements (F, Cl, S) resulting in 4.6 million conformers from 13k chemical isomers, optimized using the LBFGS algorithm and labeled with ωB97X/6-31G*. The same sampling techniques as done in ANI-1X are used for generating geometries.
Usage:
from openqdc.datasets import ANI2X
dataset = ANI2X()
Source code in openqdc/datasets/potential/ani.py
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 |
|